Preliminary communication

A facile synthesis of C-glycosylbarbiturates

JUAN A. GALBIS PEREZ*, MARTIN AVALOS GONZALEZ, JOSE L. JIMENEZ REQUEJO, and JUAN C. PALACIOS ALBARRAN

Department of Organic Chemistry, University of Extremadura, Badajoz (Spain)

(Received September 23rd, 1983; accepted for publication, October 6th, 1983)

The discovery of C-nucleosides and their antibacterial and antitumor properties $^{1-3}$ has directed considerable attention to the development of synthetic routes to this class of compounds. Although many synthetic routes have been developed $^{4-6}$, they are generally very laborious and require the convenient protection and functionalization of the sugar precursor. We now report a facile synthesis of C-nucleoside derivatives of barbituric acids by reaction of some aldoses with barbituric or 1,3-dimethylbarbituric acid.

In this way, the reaction of these acids with 2-amino-2-deoxy-D-glucose, conducted in aqueous medium at 50°, yields the acyclic *C*-glycosides 4 {gradually dec. from 200°, $[\alpha]_D^{30}$ -7° (c 0.7, M NaOH); yield 70%}, and 5 {gradually dec. from 200°, $[\alpha]_D^{20}$ -19° (c 0.6, water); yield 85%} The acetylation of these compounds takes place with dehydration, to give the cyclic *C*-nucleoside analogs 6 {m.p. 170-171°, $[\alpha]_{578}^{20}$ -35° (c 0.6, methanol); yield 55%} and 7 {m.p. 178-179°, $[\alpha]_{578}^{20}$ -35° (c 0.4, methanol); yield 63%}.

^{*}Present address: Department of Organic Chemistry, Faculty of Pharmacy, University of Seville, Seville, Spain.

In a similar way, the reaction of the hexoses D-glucose, D-galactose, and D-mannose, and the pentoses D-arabinose and D-xylose, with 1,3-dimethylbarbituric acid and Na₂CO₃ in aqueous solution, at pH 7, gives the sodium 5-(alditol-1-yl)-1,3-dimethylbarbiturates 8–12. The acetylation of these compounds takes place with dehydration between C-5 and C-1', yielding the acetates 13–17 (see Table I). In the acetylation of 10, the cyclic compound 18 {m.p. $160-161^{\circ}$, $[\alpha]_D^{20}-81^{\circ}$ (c 1.6, chloroform); yield 16%} was also obtained.

On the other hand, by heating an alkaline solution of 8, sodium 5- β -D-glucopyranosyl-1,3-dimethylbarbiturate (19) {m.p. 195–196° (dec.), $[\alpha]_D^{25}$ –9° (c 0.4, water); yield 86%} was obtained. This compound was also obtained by warming a solution of 8 in Me₂SO.

TABLE I
SOME PROPERTIES OF COMPOUNDS 8-17

Compound	n	Configuration	M.p. (degrees)	$[lpha]_{ m D}^{ m ao}$ (degrees)	Yield (%)
8	5	D-glycero-D-ido	183-185	-14 (c 0.5, water)	78
9	5	D-glycero-L-manno	185-186	+17 (c 2.9, water)	78
10	5	D-glycero-D-talo	(dec.) a	-34 (c 3.1, water)	80
11	4	D-manno	(dec.) a	-34 (c 2.0, water)	80
12	4	D-ido	(dec.) a	-24 (c 1.4, water)	70
13	4	D-gluco	130-131	+86 (c 1.3, chloroform)	76
14	4	D-galacto	159-160	+47 (c 1.4, chloroform)	85
15	4	D-manno	71-72	+39 (c 1.5, chloroform)	46
16	3	D-arabino	154-155	0 (c 1.7, chloroform)	93
17	3	D-xylo	136-137	+72 (c 3.7, chloroform)	75

^a Gradually decomposes above 200°.

Its structure was confirmed by preparing its tetraacetate (20) {m.p. 177–178°, $[\alpha]_D^{20}$ -39° (c 1, chloroform); yield 57%}.

The structures assigned these compounds are in agreement with their elemental analyses and spectral data (u.v., i.r., and ¹H-n.m.r.).

REFERENCES

- 1 R. J. Suhadolnik, Nucleoside Antibiotics, Wiley-Interscience, New York, 1970.
- 2 R. J. Suhadolnik, Nucleosides as Biological Probes, Wiley-Interscience, New York, 1979.
- 3 K. R. Darnall, L. B. Townsend, and R. K. Robins, Proc. Natl. Acad. Sci. U.S.A., 57 (1967) 548-553.
- 4 G. D. Daves, Jr., and C. C. Cheng, Prog. Med. Chem., 13 (1976) 303-349.
- 5 S. Hanessian and A. G. Pernet, Adv. Carbohydr. Chem. Biochem., 33 (1976) 111-188.
- 6 J. M. J. Tronchet, Colloq. INSERM, 81 (1978) 117-144.